The Next Version of the Internet Protocol - IPv6 - Page 5

By Pete Loshin | Posted Oct 11, 1999
Page 5 of 6   |  Back to Page 1
Print ArticleEmail Article
  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn

Part 5: Rolling IPv6 Out



Rolling IPv6 Out

Even though IPv6 lacks broadbased demand, router vendors Bay Networks, 3COM, Digital, Hitachi, Nokia, Sumitomo and Telebit all currently support IPv6; the Linux kernel also includes IPv6 support. Other vendors are working on IPv6 routers as well as IPv6 stacks for nodes. Microsoft Research, for example, currently offers an alpha version of an experimental IPv6 stack that works with Windows NT and Windows 2000; the Microsoft Windows networking group is reportedly working on a commercial version.

The next issue is finding an IPv6 network to connect to. Though you can deploy IPv6 on a testbed network within your organization, that level of implementation will not adequately demonstrate IPv6's strengths or identify potential problems. Right now your only options are the 6BONE and the 6REN; 6BONE is an experimental IPv6 backbone and 6REN offers production quality IPv6 networking.

In either case, you can't connect to an IPv6 network without connecting to an IPv6 access point: either a pTLA (pseudo top level aggregator) for 6BONE backbone transit or a pNLA (pseudo next level aggregator) for non-backbone transit. Access providers are designated pseudoTLAs and pseudoNLAs because no official registry is yet assigning "real" TLA or NLA address spaces. The access provider allocates IPv6 network address space to its customers. At that point, you can build a configured IPv4 tunnel from your site's IPv6 router to your 6BONE point of entry.

Internet Architecture Board (IAB) chair Carpenter suggest that "right now, the thing to do is to learn about IPv6." Once implementers are freed from the constraints of a overly-full IP address space, almost anything is possible. Carpenter suggests that IPv6 will soon make possible very interesting applications like "small appliances such as smart cell phones, that roll out in millions."

Allison Mankin, computer scientist at University of Southern California/Information Sciences Institute (USC/ISI) adds that one "potential killer app in IPv6 is efficient, transparent mobility. The pull for continuously connected moving devices is not here yet, but someone could create it with IPv6." Compaq's Bound sees great potential for IPv6, especially where the plentiful IPv6 addresses can reflect a business model, as in "retail department stores where each aisle is an IP subnet."

What should you do about IPv6? Organizations can support IPv6 from the inside out or from the outside in. Early implementers have the option of building islands of IPv6 connectivity within the organization to meet a specific need; research groups may begin IPv6 support this way. Other groups may support IPv6 as requested by end users, for example to enable mobile IPv6 networking, IP security architecture (IPsec) networking, and IPv6-enabled applications.

Expect network vendors to fold IPv6 support into all their products just as they now support IPv4. IAB chair Carpenter says "If it is shipped as a standard operating system or router upgrade, the costs will be operational in nature. That makes it very dangerous to generalize about the cost--a fair analogy would be with the costs of implementing an operating system release."

Mankin suggest that supporting IPv6 will reduce costs in the long run. She suggests that moving to IPv6 for ISPs is "not as costly as making a transition to nested NATs (between providers)" while for for end-users, "the cost of transition is as low as just the cost of upgrading the operating system or router version." Overall, Mankin claims, "the cost of running an IPv6 network is less than the cost of running an equivalent IPv4 network."



Comment and Contribute
(Maximum characters: 1200). You have
characters left.
Get the Latest Scoop with Enterprise Networking Planet Newsletter