Video Surveillance: Killer App or Network Killer?

By Enterprise Networking Planet Contributor | Mar 26, 2012 | Print this Page
http://www.enterprisenetworkingplanet.com/unified_communications/video-surveillance-killer-app-or-network-killer.html

by Jim Frey of Enterprise Management Associates

A lot of attention has been paid to the role that video is playing in driving growth in overall network bandwidth consumption, but most of that is trained on the well-known, easy-to-name, sexy types of video traffic like YouTube, Skype, and telepresence.  But woe is the network manager who ignores what is happening in the world of digital video surveillance, which can also generate big volumes of streaming traffic across shared network infrastructures.

In most shops, video traffic on the network is comprised of a number of different contributor types, each of which has its own unique set of bandwidth requirements and delivery constraints. Let's look at a few that are most talked about these days:

Multimedia Web content

Most of this is a combination of Web-based sources offering video content on-demand; the most well-known being YouTube. While this can eat up a fair bit of bandwidth (particularly if something is going viral) it is not typically considered real-time. Most YouTube videos are cached and invoked on-demand. As a result, while multimedia video can be annoying it can be accorded “best efforts” priority for network delivery.

Live streaming video

This is similar in many ways to multimedia content, because the traffic only goes one direction. The use case is one where a video stream is broadcast from one source to many viewers: think quarterly internal company meetings or March Madness basketball games. 

Since the desire is to do this in a real-time mode, it is necessary to ensure that sufficient bandwidth has been reserved for the event, lest the network be too congested to deliver adequate quality.  March Madness streams can gobble up 100-200kbps each, but high-end corporate video broadcasting can quickly cross the 1Mbps threshold.  It’s also important to take advantage of network features such as multicast in order to de-duplicate streams as much as possible.  There are other de-duplication options available, such features offered by WAN optimization controller vendors Blue Coat and Riverbed.

Desktop video conferencing

The poster child for this type of traffic is Skype, which is an adaptive program that can operate using as little as 30 Kbps but which will consume as much as 220 Kbps if available. The end-user experience is not great, but the expectations are also low. While many enterprise network managers simply wish to block Skype, it has become common tool for both voice and video communications and now that Microsoft owns it, its future looks bright.

There are many other solutions that fit this category, such as Microsoft’s Lync unified communications solution, which delivers low to moderate resolution but true real-time interactive video. This requires tight tolerances for latency, jitter, and packet loss along the way. The sheer volume of endpoints potentially driving such traffic could easily result in a significant footprint on the network.

As a real-life example, Avistar Communications, which focuses primarily on this type of technology, has a successful deployment exceeding 10,000 desktop video conferencing endpoints. Even at highly compressed, 384 Kpbs default rates, even moderate concurrent use results in numbers that rapidly reach frightening levels. The network manager in charge of that huge deployment has mandated a 30 percent bandwidth queue dedicated to low latency traffic to all sites, with at least half of that set aside solely for videoconferencing.

TelepresenceCisco Telepresence srceenshot of people talking

The Kingpin of live video communications, telepresence systems leverage multi-channel high-resolution video and audio to achieve a functional alternative to physical presence: site and sound, though (thankfully) not smell, at least for now. Consequently, it also has the greatest requirements for bandwidth and network delivery priority.

Room-based telepresence systems require 4 to 5 Mbps per CODEC for startup, and a sustained 500 Kbps to 1 Mbps per CODEC. The largest deployments of systems in the world today number over 1,000 endpoints per organization, but even a single pair of endpoints require network capacity planning, policy configuration, and sustained monitoring to assure session quality. (For more on those latter two points, including the case studies mentioned, see EMA’s Oct. 2011 research on Videoconferencing Impact on Network Management)

Video surveillance

As if all of those weren’t enough to disturb the slumber of the average network manager, there is yet another participant in this drama: video surveillance.

This technology has continued to evolve alongside all other types of video delivered across the network. Dedicated systems still exist, however, most are moving to digital IP-based video so that common networking infrastructure can be used to harvest feeds from multiple cameras simultaneously and deliver them to a centralized digital archive. The network impact of surveillance cameras can range widely, varying primarily along the lines of resolution and frame rate, but can easily consume as much bandwidth as a high-end telepresence CODEC.

A recent announcement by Cisco Systems highlights this. Their new Cisco Video Surveillance (CVS) Manager for UCS Express is intended for branch offices, and supports a maximum of 32 cameras at a bit-stream rate of 1 Mbps, or 15 cameras at 2 Mbps or seven cameras at 4 Mbps. By this summer, they will be offering a full CVS for UCS version targeting data center deployments that will be capable of supporting hundreds or thousands of cameras, according to Geetha Dabir, vice president of Cisco’s physical security business unit.

First of all, the concept of hundreds or thousands of cameras all streaming their feeds to a central archiving location should raise an eyebrow. Then consider that even some of those cameras are running at 4 Mbps, potentially from remote sites, and it is time for calling all hands on deck. Realistically, those high data rates will be used primarily within local remote sites, and not sent across any WAN links, but even if you deploy 100 cameras at 4 Mbps in and around a campus with a data center, you are generating nearly half a gigabyte of traffic just for streaming surveillance video.

Fortunately, this is not true real-time video. There is buffering built into most systems, but the essential translation is that surveillance video can generate just as much or even more than other types of video. To get the value out of the investment in high-resolution video surveillance, network managers will have to reserve bandwidth to assure that this traffic is successfully captured by the central storage archive.

The bottom line is that there's a new digital sheriff in town, and that sheriff’s salary could be bandwidth, and lots of it. If you are a network manager, it may be time to have a conversation with your physical security chief to see what lies in store for you and your network.

Jim Frey is a research director at Enterprise Management Associates. Jim has over 24 years of experience in the computing industry developing, deploying, managing, and marketing software and hardware products, with the last 18 of those years spent in network management, straddling both enterprise and service provider sectors. At Enterprise Management Associates, Jim is responsible for the Network Management practice area. Prior to joining EMA, Jim spent six years with NetScout Systems as vice president of Marketing.