802.11n Unlocks the Potential of the 5 GHz Band

802.11a, the first 5 GHz Wi-Fi spec, lacked effective coverage. 802.11n changes that equation, improving range and throughput.

 By Ken Biba
Page 1 of 2
Print Article

The IEEE 802.11 wireless LAN standards have long included service on multiple frequency bands—2.4 GHz and 5 GHz.

However, largely due to the disappointing coverage of existing 5 GHz products (802.11a)—the use of 5 GHz Wireless LANs has been limited to a few high-capacity enterprise networks, consumer networks, and wireless backhaul for metropolitan area networks. 5 GHz radio signals just do not propagate as well—particularly indoors, through walls—as 2.4 GHz radio signals. It's basic physics.

For most enterprises, a 5 GHz 802.11a infrastructure required too many access points. When 802.11g came along and delivered the 54 Mbps data rate of 802.11a in the 2.4 GHz band, most networks stayed at 2.4 GHz due to the better coverage of 802.11g access points. One consequence of this is the overloading of the 2.4 GHz band. With only three non-overlapping 802.11 channels in this band; Wi-Fi networks are increasingly contending with their neighbors as well as microwave ovens, cordless phones, and other devices that share this spectrum. Over time, the congestion in the 2.4 GHz band will only get worse. Where do we go from here?

802.11n to the Rescue

802.11n supports both 2.4 GHz and 5 GHz bands. It has a single MAC protocol that operates with a multiple frequency physical layers. And it dramatically improves the range, coverage and throughput in both frequency bands.

Frequency Band (GHz) Independent 20 MHz Channels Possible 40 MHz Channels
2.40–2.485 3 1 Indoor/outdoor
5.15–5.25 4 2 Indoor only
5.25–5.35 4 2 Indoor/outdoor
5.47–5.75 10 5 Indoor/outdoor, dynamic frequency selection and power control
5.75–5.85 4 2 Outdoor
Total 25 12
802.11n Frequency Bands

802.11n makes use of the legacy 2.4 GHz band and constructs three largely non-interfering 20 MHz channels or one 20 MHz channel and one 40 MHz channel. It is backward-compatible with 802.11b/g stations and channelization. 802.11n makes use of the existing 802.11a channel set in the 5 GHz band at (5.15–5.25, 5.25–5.35, and 5.75–5.85 GHz) to construct twelve non-overlapping 20 MHz channels or as many as six non-overlapping 40 MHz channels. 802.11n will also take advantage of new worldwide regulatory changes making the 5.47–5.75 GHz band available for unlicensed WLAN use.

If 802.11n users could only tap the potential of the 5 GHz band they would have access to 25 channels in the combined bands—potentially delivering over seven gigabits per second of raw wireless capacity in an enterprise network.

The realization of that potential requires 802.11n to do what seems impossible—substantially increase the range of 5 GHz operation to match the range of 802.11g, while delivering the performance advantages of 802.11n. Novarum decided to test Draft 802.11n products to see if the performance improvements of multiple antennas, smart radios, and multiple spatial streams offered by 802.11n would be enough to overcome coverage limitations of 802.11a.

This article was originally published on Aug 18, 2007
Get the Latest Scoop with Networking Update Newsletter